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Stochastic resonance in nonpotential systems

T. Alarcón, A. Pérez-Madrid, and J. M. Rubı´
Departament de Fı´sica Fonamental, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

~Received 2 October 1997!

We propose a method to analytically show the possibility for the appearance of a maximum in the signal-
to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic
external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based
on the reduction to a one-dimensional dynamics in the adiabatic limit and in the topology of the phase space
of the systems under study. Its application to other nonpotential systems is also discussed.
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I. INTRODUCTION

Stochastic resonance~SR! @1–8# is a phenomenon in
which an enhancement of the response of a nonlinear sy
is observed when this system yields to an external forcin
some optimized nonzero noise level. Since the origi
proposition of SR as a possible explanation for periodic
currences in the global climate dynamics, SR has become
object of copious theoretical and experimental research
wide variety of systems in physics, biology, and chemist
In all these works the possibility of noise having benefic
effects on the dynamics of nonlinear systems has b
pointed out. The original formulation of the problem,
terms of a bistable system and a periodic forcing, has b
extended to systems under the action of aperiodic forcing@9#
and nondynamical systems@7,10#.

In the present work we focus our attention on nonpot
tial systems. Nonpotential systems correspond to system
from equilibrium for which the principle of detailed balanc
does not hold. There are abundant examples of such sys
arising from biological, chemical, and physical problem
Our contribution in this paper is to develop a formalism th
allows us to analytically treat a wide class of nonpoten
systems among which one can include excitable and thr
old systems as well as, for example, symmetric double-w
models@11#. In particular, we apply our approach to contin
the work undertaken by some authors in studying the
chastic properties of the FitzHugh-Nagumo~FHN! model.
This is a well-known model with a wide application in th
field of neuronal research@12,5#. Apart from several numeri-
cal simulations done on this subject, Collinset al. @9# have
carried out some analytical work on this matter in the area
aperiodic stochastic resonance. Some experimental rese
has been performed to show the existence of SR in
model @13#. The results obtained were compared to the p
dictions of the theory of SR in nondynamical systems@10#.
Our scheme allows us to analytically approach this prob
in a simple way by using a generalization of the kinetic eq
tion approach used in the case of potential systems~see
@2,14,15#!.

All of the aforementioned models have a common featu
their dynamics exhibit three fixed points: an unstable po
between two stable points. This feature established som
semblance between the processes described by these m
and the hopping through a potential barrier. There is a g
571063-651X/98/57~5!/4979~7!/$15.00
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variety of systems that contain these features. The FitzHu
Nagumo model, in its bistable regime, belongs to them. I
worth pointing out that this is not the regime in which th
model is used to model neural activity. In this context t
FHN model is taken to be in the excitable regime where o
one globally attractor exists. As it is pointed out by Wiese
feld et al. @6#, a simple model of excitable system consis
among other things, of a threshold or potential barrier. O
theory provides a way to compute the escape rates from
attractors of a type of two-dimensional nonpotential syste
and therefore it furnishes us with the main condition need
to apply the theory developed by Wiesenfeldet al. This is
what makes our work relevant to the field of excitable s
tems. Another example of the characteristics we are look
for is the class of symmetric double-well systems@11#. The
Sel’kov model@16# for autocatalytic systems has these fe
tures too.

This paper is organized as follows. In Sec. II we precis
define the range of applicability of our theory. We study t
dynamics of the fluctuations and compute the kinetic eq
tions. In Sec. III we introduce the FitzHugh-Nagumo mod
We analyze its stochastic properties and show the existe
of stochastic resonance. Finally, in Sec. IV we discuss
main results.

II. DYNAMICS OF THE FLUCTUATIONS

In this work we study the stochastic properties of a cla
of two-dimensional nonpotential noisy dynamical system
These system may be characterized by the peculiar topo
of the phase space of their corresponding deterministic
derlying versions. For the case we are concerned the dyn
ics is characterized by the presence of three aligned fi
points: an unstable point between two stable points. An
ample of this kind was given by Maier and Stein@11# in the
context of the escape problem. They studied a system wi
symmetric phase space consisting of a hyperbolic point
tween two sinks whose attraction basins were separate by
separatrix of the hyperbolic point.

To begin with consider a general two-dimensional no
dynamical system@17#

dxW

dt
5uW ~xW !1gWW •jW~ t !, ~1!
4979 © 1998 The American Physical Society
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wherexW is the vector whose components are state variab

the fielduW (xW ) is the drift,gWW is the noise matrix, andj(t) is a
Gaussian white noise of zero mean and correlation func
given by

^j i~ t !j j~ t8!&52Dd i j d~ t2t8!, ~2!

with D being the noise intensity. For the case discussed
@11# the components of the drift are

u1~xW !5P3~x!1axmy1b, ~3!

u2~xW !5cx2dy1e, ~4!

whereP3(x) is a third-order polynomial andm is an integer
such that 0<m<2. From Eq.~4! it is easy to check that al
the fixed points are aligned. By equating Eq.~3! to zero, one
obtains a third-order equation with three real roots for
proper values of the parameters. The corresponding Fok
Planck equation for the probability densityr(x,t) is

]r

]t
5¹W •@2uW ~xW !r1¹W •~DWW r!#, ~5!

whereDWW 5DgWW •gWW T is the diffusion tensor.
Let us now assume that the system is a potential one

such a case it is possible to write the Fokker-Planck equa
as a continuity equation

]r

]t
52¹W •JW , ~6!

whereJW is the diffusion current given by

JW52De2U/D¹W •emWW /D. ~7!

To obtain this expression, we have definedU andmWW ~a gen-
eralized chemical potential! as

U[2E uW •dxW , ~8!

emWW /D[gWW reU/D. ~9!

For a potential system, the functionU as defined in Eq.
~8! is simply the potential energy. In the nonpotential ca
however, the value ofU will depend on the path of integra
tion we choose and, in general, we cannot achieve Eqs~6!
and ~7!.

Now consider the weak-noise limit and think about so
general characteristics of the probability distribution. If w
let the system evolve during a sufficiently long time t
probability distribution will have two maxima at the tw
stable fixed points~SFPs! of the deterministic dynamics an
a minimum in the unstable fixed point~USFP! @18#. On the
other hand, in the weak-noise limit the probability distrib
tion will be very narrow around the line on which the fixe
point lies. Thus we can assume that the fluctuations run o
this line and therefore their dynamics are practically one
mensional. This approximation can be justified by accou
ing for the assumption of a low-noise level and the adiab
limit. In the one-dimensional double-well problem the ad
batic hypothesis implies that the representative point of
s,
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system is, in this long-time limit, in one of the two wells@2#;
@14#, in our two-dimensional problem the adiabatic hypot
esis implies that the dynamics will be restricted to be on
null cline. On the other hand, as it was found by Maier a
Stein in @11#, the distance to the null cline, in the limit o
weak-noise intensity, is normally distributed with varian
equal to the square root of the noise level. Therefore,
fluctuations will run in a very narrow region around the nu
cline. Consequently, although the whole system is a non
tential one, we can reduce the one-dimensional dynam
whose potential is given by the functionU taking as the
integration path the null cline. For the case discussed pr
ously from Eqs.~3!, ~4!, and~8!, under these circumstance
one then obtains the drift

u1~x!5P3~x!1
ac

d
xm111b1

eaxm

d
~10!

corresponding to the dynamics of the fluctuations in
weak-noise limit and

U52Ex

dtS P3~ t !1
ac

d
tm111b1

eaxm

d D . ~11!

Our next step will be to discretize the dynamics on t
null cline. In particular, we will obtain the kinetic equation
To this end we define the populationsn1 (n2) as the popu-
lation on the right~left! of the USFP@19#

n15E
S[ 1]

r~xW ,t !dxW , ~12!

n25E
S[ 2]

r~xW ,t !dxW , ~13!

whereS@1# (S@2#) is the portion of the phase space on t
right ~left! of a line orthogonal to the line that contains th
fixed points and passing through the USFP.

In the adiabatic limit we can assume that the population
strongly concentrated in a small region around the SFP
suggested by the picture of the probability density that
have profiled when the maximum in this long-time limit
very high. This corresponds, assuming one-dimensional fl
tuations dynamics, to having a bistable potential with tw
deep minima at the SFP and a maximum at the USFP
equivalently, a high potential barrier.

In the present context we mean by an adiabatic aproxi
tion a long-time limit in which the entire system has arriv
at a quasistationary state such that the probability of the
tem to be in a state different from the stationary stable s
is practically zero. So in this limit we can suppose that t
system reaches a quasistationary state in which a quas
tionary diffusion current is established. In addition, the s
tem is assumed to be uniform between the two maxima
the probability density and in the weak-noise limit this cu
rent is concentrated at the line joining the three fixed poi
without loss of generality; the system can be taken to lie
the axisy50:

JW~xW ,t !5JW~x,t !d~y!5JW~ t !d~y!@u~x2x1!2u~x2x2!#,
~14!
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57 4981STOCHASTIC RESONANCE IN NONPOTENTIAL SYSTEMS
wherex1 (x2) is the coordinate of the fixed point on th
right ~left! of the USFP.

The kinetic equation forn1 is given by

dn1

dt
5E

S[ 1]

]r

]t
dxW52E

S[ 1]
¹W •JW dxW . ~15!

By using the divergence theorem and the assumptions a
the form of the diffusion current, we have

dn1

dt
5E

2`

1`

J1~x,t !d~y!dy5J1~x,t ! ~16!

and proceeding in the same way forn2 we obtain

dn2

dt
52J1~x,t !. ~17!

In addition, due to the height of the maxima in the pro
ability density and the weakness of the noise, we can a
consider that the equilibrium on each side of the USFP
reached independently. Thus the generalized chemical po
tial is given by

m~xW ,t !5$m~x1 ,t !u~x02x!1m~x2 ,t !u~x2x0!%d~y!,
~18!

wherex0 is the coordinate of the USFP. The tensorial ch
acter of the generalized potential has been removed du
the dynamics reduction to one dimension. In Eq.~18! m
[m11 has been defined. By using Eq.~18! in Eq. ~7! we
obtain

C~xW ,t !5$C1e2~U2U1!/Du~x02x!

1C2e2~U2U2!/Du~x2x0!%d~y!, ~19!

whereU corresponds to the integral over the adequate p
of Eq. ~10!, U1 and U2 are its values at the SFP~its
minima!, C[g11r, andC65g11r(x6 ,t).

In order to obtain the expression for the quasistation
currentJ1(t) we follow the same procedure as in@14#. From
the definition of the probability current and the adiaba
hypothesis we have

J1~ t !@u~x2x1!2u~x2x2!#52De2U/D]xe
m/D, ~20!

where a diagonal diffusion tensor is assumed. Integra
now overx and taking into account that, due to the height
the barrier, the main contribution to these integrals is aro
the maximum of the potentialx0, one obtains

J1~ t !52DS uU09u
2pD D 1/2

e2U0 /D~em1/D2em2/D!, ~21!

where U0
9[d2U/dx2ux0

, U0[U(x0), and m1, m2 are the
values of the generalized chemical potential at the SFP.

By using Eq.~19! we can rewrite Eq.~21! as

J1~ t !5DS uU0
9 u

2pD
D 1/2

~C2e2~U02U2!/D2C1e2~U02U1!/D!,

~22!
ut
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whereU1 andU2 are the values of the potential at the SF
On the other hand, by using Eq.~19! in Eq. ~12! one obtains
the relations

C15S U1
9

2pD
D 1/2

n1 , ~23!

C25S U2
9

2pD
D 1/2

n2 . ~24!

These expressions allow us to write the kinetic equati
for the populationsn1 andn2 in the form

dn1

dt
52

dn2

dt
5K2n22K1n1 , ~25!

where the kinetic coefficients are given by

K75
1

2p
~ uU0

9 uU7
9 !1/2e2~U02U7!/D. ~26!

With this result we have obtained of the kinetic equatio
for the nonpotential system.

III. THE FITZHUGH-NAGUMO MODEL

In this section we will apply the results of the precedi
section to the study of the FitzHugh-Nagumo neural mo
@12,20–22#. This model is a variant of the Hodgkin-Huxle
model @22–24#, which accounts for the essentials of the r
generative firing mechanisms in nerve cells. The FHN eq
tions correspond to an excitable threshold model, but, as
be seen briefly, due to their cubic nonlinearity, they exhi
the characteristic behavior of a bistable system. Our m
objective is to show analytically the appearance of SR in t
model under a periodic external forcing.

The nondimensional equations of the FHN model are@22#

dv
dt

5v~a2v !~v21!2w1I a , ~27!

dw

dt
5bv2gw, ~28!

where 0,a,1 is essentially the threshold value,b and g
are positive constants, andI a is the applied current. For the
sake of simplicity and without loss of generality, we w
take I a50. The drift field for this model is given by

u1~v,w!5v~a2v !~v21!2w, ~29!

u2~v,w!5bv2gw. ~30!

As can be seen from Eq.~28!, the null cline of the deter-
ministic dynamics of Eqs.~29! and ~30! is the line v
5(g/b)w. By substitution on the right-hand side of Eq.~27!,
we find the equation for steady states

v~a2v !~v21!2
b

g
v50. ~31!

This is a third-order equation, which for certain values of t
parameters has three roots~see Fig. 1!. Two of these three
fixed points are stable (F2 and F1) and one is unstable
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(F0), situated between the other two@22#. Thus, in this case
this system fulfills the conditions for our theory to be a
plied.

The functionU defined in Sec. II has to be integrated
this case over the linev5(g/b)w. Performing this integra-
tion, one obtains

U5
v4

4
2

a11

3
v31

a1b/g

2
v2. ~32!

On the other hand, when this system is in a noisy en
ronment, in the limit of weak noise, we can approximate
dynamics of the fluctuations by the one-dimensional Lan
vin equation

dv
dt

5v~a2v !~v21!2
b

g
v1j~ t !, ~33!

that is, the fluctuations run along the linev5(g/b)w. As can
be easily checked,U is the potential for the deterministi
part of this equation. The two SFP’s of this one-dimensio
dynamics are the two minima of Eq.~32! and the USFP is its
maximum. Collinset al. @9# previously have arrived at simi
lar conclusions by another approach in the context of
study of aperiodic stochastic resonance.

Figure 2 shows the asymmetric shape ofU. Before going
any further, it would be interesting to summarize what t

FIG. 1. Fixed points of the FitzHugh-Nagumo model fora
50.5 andb/g50.01 ~nondimensional variables!.

FIG. 2. Asymmetric one-dimensional potential as a function
v ~nondimensional variables!.
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picture reveals about the physics of the problem@12,9#. In
the FHN model there is a fast variablev(t) and a recovery-
like variable w(t). After the barrier threshold has bee
crossed, i.e., the system has gone to an ‘‘excited’’ state,
system returns~even in the deterministic case! to the ‘‘rest’’
state. As can be seen in Fig. 2, there is one stable state
which the potential is larger than for the other stable sta
Therefore, there is a more stable state, which correspond
the rest state to which the system returns after some ti
under the action of the noise. In our scheme the presenc
noise is necessary in order to return to the rest state bec
of the elimination ofw(t).

In order to show how this scheme can account for
existence of stochastic resonance in the FHN model, we
suppose that the system is under the action of periodic f
ing. For the sake of simplicity, we will assume that the p
rametera is a periodic functiona5a0(11e0sinvst), where
e0 is a small parameter anda0(11a),1.

To takea as an oscillatory factor implies that the pos
tions of F0 ~the USFP! andF1 ~one of the SFPs! as well as
the values of the potential at these points become oscilla
functions. The position ofF2 ~the other SFP! remains con-
stant. Letv0 andv2 , v1 be thev coordinates of the maxi-
mum and the minima, respectively, of the potential; one

U1[U~v1!5j11h1e~ t !. ~34!

To compute the moments and the power spectrum,
assume that, in the limit of weak noise, the probability de
sity ~in one dimension! can be written as@2#

p~v,t !5n1~ t !dv,v1
1n2~ t !dv,v2

, ~35!

wheren1 andn2 come from the kinetic equations~25!. The
formal solution to these equations is found to be

n6~ t !5g21~ t !S n6~ t0!g~ t0!1E
t0

t

K7~ t8!g~ t8!dt8D ,

~36!

with

g~ t !5E t

~K11K2!dt8. ~37!

In order to calculaten6 we perform a Taylor expansion o
the transition rates up to first order with respect to the
rametere(t):

K65a0
61a1

6f0sin v0t, ~38!

wheref0 has been defined asf0[e0 /D anda0
6 anda1

6 are
given by

a0
65

e2j0 /D

2p
d0

6ej6 /D, ~39!

a1
65

e2j0 /D

2p
d0

6ej6 /D~h02h6!, ~40!

with d0
6 being the zeroth-order contribution ofuU09uU69 , j0

and h0 the zeroth- and first-order contributions ofU at the
USFP, andj6 and h6 the zeroth- and first-order contribu
tions of U at the SFPs. The first-order contribution can
neglected in the limit of weak noise. By introducing the

f
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Taylor expansions in Eqs.~36! and~37!, we obtain the popu-
lations up to first order in the parameterf0:

n6~ t !5e2a0~ t2t0!S dv~ t0!,v6
2

a0
7

a0
2f0

a0
7a1

a0v0
cos~v0t !

1f0a1
7

cos~v0t01F!

~a0
21v0

2!1/2
2f0

a1

v0

cos~v0t01F!

~a0
21v0

2!1/2 D
1

a0
7

a0
S 11f0

a1

v0
cos~v0t ! D2f0a1

7
cos~v0t1F!

~a0
21v0

2!1/2

1f0

a1

v0

sin~v0t1F!

~a0
21v0

2!1/2
, ~41!

whereF[arctan(a0 /v0) and a05a0
11a0

2 . The quantity
n6(tuv t0

,t0) is the conditional probability thatv(t) is in the

positive state at timet given that the state at timet0 wasv t0
.

From this equation it is possible to compute the statist
properties of the processv(t). Of particular interest to our
purposes is to find its autocorrelation function, which
given by @6#

^v~ t !v~ t1t!&5 lim
t→2`

^v~ t !v~ t1t!uv t0
,t0&. ~42!

The conditional correlation function is given by
w

ar
ai
l

^v~ t !v~ t1t!uv t0
,t0&

5v1~ t1t!v1~ t !n1~ t1tuv1 ,t !n1~ tuv t0
,t0!

1v1~ t1t!v2~ t !n1~ t1tuv2 ,t !n2~ tuv t0
,t0!

1v2~ t1t!v1~ t !n2~ t1tuv1 ,t !n1~ tuv t0
,t0!

1v2~ t1t!v2~ t !n2~ t1tuv1 ,t !n2~ tuv t0
,t0!. ~43!

Let us make some considerations that allow us to simp
the computation of the autocorrelation function. It is cle
from Eq. ~43! that the Fourier transform of the autocorrel
tion function will depend ont as well as on the frequency
This dependence is avoided by taking its average over
period of the external forcing@2#. The autocorrelation func-
tion is to be computed up to the second order of the par
eterf0;D21. Thus, in the limit of weak noiseD21 can be
neglected in comparision toD22. Therefore, the only contri-
bution of the first-order term ofv6 to the autocorrelation
function comes from its product with the zeroth-order te
of the product ofn’s. However, on doing the average th
term vanishes. So, finally, taking into account thatv250,
we arrive at

^v~ t !v~ t1t!uv t0
,t0&5l1

2 n1~ t1tuv1 ,t !n1~ tuv t0
,t0!,

~44!

where the overbar indicates an average overt andl1 is the
position of F1 up to order zero. From Eqs.~43! and ~44!,
taking the average and the limitt0→2`, we finally obtain
the expression for the autocorrelation function
^v~ t !v~ t1t!&5l1
2 S a0

2

a0
D 2

1e2a0utuS a0
2

a0
D S 12

a0
2

a0
D 1l1

2 f0
2H 1

2
e2a0utuFa0

2a1
2a1

a0
2a0

2S a1

v0
D 2

2~a1!22S a1

v0
D 2G S 1

a0
21v0

2D
1Fa0

2a1
2a1

a0
2a0S a1

v0
D 2Gcos~v0t!

a0
21v0

2
1S a0

2

a0

a1
2

v0
1

a0
2a1

2a1

a0
D sin~v0t!1

cos~v0t!

a0
21v0

2 Fa0
2a1

2

v0
2

2
a0

2a1
2a1

a0

1
1

2
~a1

2!21
1

2S a1

v0
D 2G J . ~45!
d-
With this results we can now compute the averaged po
spectrum given by

S~V!5
v0

2pE0

2p/v0
S~V,t !dt5E

2`

1`

^v~ t !v~ t1t!&e2ıVtdt,

~46!

where the last equality follows from the commutative ch
acter of the averaging and the Fourier transform. We obt
after a Fourier transformation of Eq.~45!,
er

-
n,

S~V!5l1
2

a0
2

a0
d~V!12

l1
2

a0
21V2

a0
2S 12

a0
2

a0
D

12p
l1

2 f0
2

a0
21V2 F ~a0

2!2a1
2

v0
2

2
~a0

2!2a1
2a1

a0
2

1
1

2

~a1
21!2

a0
2 1

1

2 S a1a0
2

v0
D 2Gd~V2v0!. ~47!

In this expression the fraction of the total power in the broa
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band noisy part of the spectrum, which usually is a sm
fraction of the total power, has been neglected@2#. Note that
in the power spectrum there is a term proportional tod(V).
This is due to the asymmetry of the potential that origina
a mean probability current between one stable state and
more stable one. To our knowledge, this term has not b
obtained in previous approaches to this problem@9,10#.

From Eq.~47! the signal-to-noise ratioR can be obtained
as a function of the noise levelD by settingV5v0:

R5

e0
2p

D2 F3

2
a0

2S a1

v0
D 2

2
a0

2a1
2a1

a0
2

1
1

2

~a1
2!2

a0
2 G

12
a0

2

a0

. ~48!

We have plottedR in Fig. 3 as a function of the nois
level. It exhibits a maximum for a nonzero noise level a
therefore this model shows a stochastic resonance.

IV. CONCLUSIONS

In this paper we have proposed a method to analyze
possibility for the appearance of SR in nonpotential syste

FIG. 3. Signal-to-noise ratio as a function of the noise levelD
~nondimensional variables!.
st
ll

s
he
n

e
s.

In particular, we have treated the FHN model. Much nume
cal work on this subject has been performed, but only a f
papers have treated this problem from an analytical pers
tive due to the difficulties inherent in the nature of nonp
tential system. The work by Collinset al. @9# where aperi-
odic SR is discussed, and the paper by Peiet al. @13#, in
which the theoretical framework developed by Ginglet al.
@10# was used to interpret some experimental results,
among the ones discussing analytical aspects.

Far from being specific to this problem, the method w
have proposed can be extended to a wide variety of diffe
nonpotential systems ranging from threshold systems
some autocatalytic models and symmetric double-well s
tems from fields so diverse as chemical kinetics and pop
tion dynamics. Although, for the sake of brevity, we do n
quote our results here, we have applied our approach to
of Collins et al. @9# with a periodic input and we have ob
tained similar results in both cases, not the same becaus
the case Collinset al. the input is additive and the thresho
is maintained constant. We have applied our theory to
standard double-well model@11# and we have obtained tha
this model exhibits SR. The result in this case is equival
to the one obtained in@2# for a symmetric quartic potential

The scheme we have presented in this paper allows u
treat potential and the class of aforementioned nonpoten
systems in a unified way. Moreover, it reproduces the ess
tials of the physics of the problem, as can be seen from
obtainment of the refractory current in Eq.~52! @12#. Finally,
it is worth pointing out that our method, which constitut
essentially an extension of the Kramers rate theory to
kind of nonpotential systems, enables one to compute
kinetic coefficients in a simple and direct way.
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