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Stochastic resonance in nonpotential systems
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We propose a method to analytically show the possibility for the appearance of a maximum in the signal-
to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic
external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based
on the reduction to a one-dimensional dynamics in the adiabatic limit and in the topology of the phase space
of the systems under study. Its application to other nonpotential systems is also discussed.
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I. INTRODUCTION variety of systems that contain these features. The FitzHugh-
Nagumo model, in its bistable regime, belongs to them. It is
Stochastic resonancéSR) [1-8] is a phenomenon in worth pointing out that this is not the regime in which this
which an enhancement of the response of a nonlinear systemodel is used to model neural activity. In this context the
is observed when this system yields to an external forcing atHN model is taken to be in the excitable regime where only
some optimized nonzero noise level. Since the originaPne globally attractor exists. As it is pointed out by Wiesen-
proposition of SR as a possible explanation for periodic refeld etal.[6], a simple model of excitable system consists,
currences in the global climate dynamics, SR has become ttfnong other things, of a threshold or potential barrier. Our
object of copious theoretical and experimental research in §1€0ry provides a way to compute the escape rates from the
wide variety of systems in physics, biology, and chemistry attractors of a type of two—d|mgn3|onal nqnpotent!al systems
In all these works the possibility of noise having beneficigiand therefore it furnishes us with the main condition needed

effects on the dynamics of nonlinear systems has beelf apply the theory developed by Wiesenfeltal. This is
pointed out. The original formulation of the problem, in what makes our work relevant to the f|e_ld_ of excitable sys-
terms of a bistable system and a periodic forcing, has beet(gam_s. Another example of t_he characteristics we are looking
extended to systems under the action of aperiodic for@hg for is the class of symmetric double-well systefad]. The
and nondynamical systerfig,10]. Sel’kov model[16] for autocatalytic systems has these fea-
In the present work we focus our attention on nonpotenfUres too. . _ _
tial systems. Nonpotential systems correspond to systems far 1 his paper is organized as follows. In Sec. Il we precisely
from equilibrium for which the principle of detailed balance define the range of applicability of our theory. We study the
does not hold. There are abundant examples of such systerff¥namics of the fluctuations and compute the kinetic equa-
arising from biological, chemical, and physical problems.tions. In Sec.. I we |ntro.duce the FltzHugh—Nagumo m.odel.
Our contribution in this paper is to develop a formalism that"Ve analyze its stochastic properties and show the existence
allows us to analytically treat a wide class of nonpotentialof stochastic resonance. Finally, in Sec. IV we discuss our
systems among which one can include excitable and thresfoain results.
old systems as well as, for example, symmetric double-well
models[11]. In particular, we apply our approach to continue
the work undertaken by some authors in studying the sto-
chastic properties of the FitzHugh-Nagun@®HN) model. In this work we study the stochastic properties of a class
This is a well-known model with a wide application in the of two-dimensional nonpotential noisy dynamical systems.
field of neuronal researdi2,5]. Apart from several numeri- These system may be characterized by the peculiar topology
cal simulations done on this subject, Colliesal. [9] have  of the phase space of their corresponding deterministic un-
carried out some analytical work on this matter in the area otlerlying versions. For the case we are concerned the dynam-
aperiodic stochastic resonance. Some experimental reseands is characterized by the presence of three aligned fixed
has been performed to show the existence of SR in thipoints: an unstable point between two stable points. An ex-
model[13]. The results obtained were compared to the preample of this kind was given by Maier and St¢ilt] in the
dictions of the theory of SR in nondynamical systefrh6]. context of the escape problem. They studied a system with a
Our scheme allows us to analytically approach this problensymmetric phase space consisting of a hyperbolic point be-
in a simple way by using a generalization of the kinetic equatween two sinks whose attraction basins were separate by the
tion approach used in the case of potential systése® separatrix of the hyperbolic point.
[2,14,15). To begin with consider a general two-dimensional noisy
All of the aforementioned models have a common featuregdynamical systenil7]
their dynamics exhibit three fixed points: an unstable point

II. DYNAMICS OF THE FLUCTUATIONS

between two stable points. This feature established some re- -
semblance between the processes described by these models d—x=ﬁ(§)+gz~ E(t) (1)
and the hopping through a potential barrier. There is a great dt '
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wherex is the vector whose components are state variablegystem is, in this long-time limit, in one of the two wel@];
[14], in our two-dimensional problem the adiabatic hypoth-

esis implies that the dynamics will be restricted to be on the
Bull cline. On the other hand, as it was found by Maier and
Stein in[11], the distance to the null cline, in the limit of
(&i(D§(t"))=2Dg;o(t—t"), (2)  weak-noise intensity, is normally distributed with variance
equal to the square root of the noise level. Therefore, the
with D being the noise intensity. For the case discussed ifjuctuations will run in a very narrow region around the null
[11] the components of the drift are cline. Consequently, although the whole system is a nonpo-
i m tential one, we can reduce the one-dimensional dynamics
Uz () =Ps(x) +axTy +b, @ Wwhose potential is given by the functidd taking as the
Uy(X)=cx—dy+e, (4)  integration path the null cline. For the case discussed previ-
ously from Eqs(3), (4), and(8), under these circumstances,
whereP3(x) is a third-order polynomial anth is an integer ~ one then obtains the drift
such that B2m=2. From Eq.(4) it is easy to check that all

the fieldU(x) is the drift,g is the noise matrix, and(t) is a
Gaussian white noise of zero mean and correlation functio
given by

the fixed points are aligned. By equating E8) to zero, one Ug(X) = Pa(x) + ac miipy eax" (10
obtains a third-order equation with three real roots for the d d
proper values of the parameters. The corresponding Fokker-
Planck equation for the probability densjtyx,t) is corresponding to the dynamics of the fluctuations in the
ap weak-noise limit and
—-=V-[-U(X)p+V-(Dp)], (5) \ ac . ear
U=— | dt| P3(t)+ th +tht —— (11

whereD=Dg-g" is the diffusion tensor.

Let us now assume that the system is a potential one. In Our next step will be to discretize the dynamics on the
such a case it is possible to write the Fokker-Planck equationull cline. In particular, we will obtain the kinetic equations.
as a continuity equation To this end we define the populations (n_) as the popu-
lation on the right(left) of the USFP[19]

J - -
==V, (6)
n.= f p(x,1)dx, (12)
> S+
wherelJ is the diffusion current given by ]
Jj=—De VPV .eHD, 7) n_:f p(x,t)dx, (13)
S[-]

To obtain this expression, we have defindzdand,z (a gen-

eralized chemical potentiahs whereS +] (§ —]) is the portion of the phase space on the

right (left) of a line orthogonal to the line that contains the

—— ([ o.ax 8 fixed points and passing through the USFP.

- u-ax, (8) In the adiabatic limit we can assume that the population is

- R strongly concentrated in a small region around the SFP, as
e"’P=gpeV’P, (9)  suggested by the picture of the probability density that we

have profiled when the maximum in this long-time limit is
For a potential system, the functidh as defined in Eq. very high. This corresponds, assuming one-dimensional fluc-
(8) is simply the potential energy. In the nonpotential casetuations dynamics, to having a bistable potential with two
however, the value of) will depend on the path of integra- deep minima at the SFP and a maximum at the USFP or,
tion we choose and, in general, we cannot achieve Ejs. equivalently, a high potential barrier.
and (7). In the present context we mean by an adiabatic aproxima-
Now consider the weak-noise limit and think about sometion a long-time limit in which the entire system has arrived
general characteristics of the probability distribution. If we at a quasistationary state such that the probability of the sys-
let the system evolve during a sufficiently long time thetem to be in a state different from the stationary stable state
probability distribution will have two maxima at the two is practically zero. So in this limit we can suppose that the
stable fixed point$SFP$ of the deterministic dynamics and system reaches a quasistationary state in which a quasista-
a minimum in the unstable fixed poi@SFP [18]. On the  tionary diffusion current is established. In addition, the sys-
other hand, in the weak-noise limit the probability distribu-tem is assumed to be uniform between the two maxima of
tion will be very narrow around the line on which the fixed the probability density and in the weak-noise limit this cur-
point lies. Thus we can assume that the fluctuations run oveent is concentrated at the line joining the three fixed points
this line and therefore their dynamics are practically one diwithout loss of generality; the system can be taken to lie on
mensional. This approximation can be justified by accountthe axisy=0:
ing for the assumption of a low-noise level and the adiabatic
limit. In the one-dimensional double-well problem the adia- 5(§,t)=5(x,t)5(y)=j(t)5(y)[0(x—x+)— O(x—x_)],
batic hypothesis implies that the representative point of the 14
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wherex, (x_) is the coordinate of the fixed point on the whereU, andU _ are the values of the potential at the SFP.

right (left) of the USFP. On the other hand, by using EA.9) in Eq. (12) one obtains
The kinetic equation fon, is given by the relations
dn*—f apd”— f V-J dx (15) v v | * 23
dt g+ 0t x= S[+] - X *\2#D N+ @3
v\ 12
By using the divergence theorem and the assumptions about _ U_ n (24)
the form of the diffusion current, we have - \2#D
dn, i These expressions allow us to write the kinetic equati
- ) = 1 p quations
dt ffoo (X0 8(y)dy=J,(x.1 (16) for the populations1,. andn_ in the form
L . dn, an_
and proceeding in the same way for we obtain TR T K_n_—K,n,, (25
dn_
ot = ddx. 17 where the kinetic coefficients are given by
1 n n — —
In addition, due to the height of the maxima in the prob- K:IE(|U0|U:)1/26 (Uo~U=)D, (26)

ability density and the weakness of the noise, we can also

consider that the equilibrium on each side of the USFP is  with this result we have obtained of the kinetic equations
reached independently. Thus the generalized chemical potefyy the nonpotential system.

tial is given by

(X, 1) ={ (X5 1) 8(Xo—X) + (X 1) B(X—X0) } &(y),
(18 In this section we will apply the results of the preceding

. . . section to the study of the FitzHugh-Nagumo neural model
whereX, is the coordinate of the USFP. The tensorial chars45 20-22. This model is a variant of the Hodgkin-Huxley

acter of the generalized potential has been removed due {3, e([22-24, which accounts for the essentials of the re-
the dynamics reduction to one dimension. In E#8) «  generative firing mechanisms in nerve cells. The FHN equa-
=py has been defined. By using E(L8) in Eq. (7) We  jions correspond to an excitable threshold model, but, as will
obtain be seen briefly, due to their cubic nonlinearity, they exhibit
- —(U- the characteristic behavior of a bistable system. Our main
P ={ e Po(x0—x) objective is to show analytically the appeargnce of SR in this
+\Ifﬁef(ufu—)/Da(X—xo)}ﬁ(y), (19 model under a periodic external forcing.
The nondimensional equations of the FHN model[@&

whereU corresponds to the integral over the adequate path

lll. THE FITZHUGH-NAGUMO MODEL

of Eq. (10, U, and U_ are its values at the SFHts d—v=v(a—v)(v—1)—w+la, (27)
minima), ¥'=g,4p, and¥ . =g;1p(X~ ,t). dt

In order to obtain the expression for the quasistationary dw
currentJ,(t) we follow the same procedure as[it¥]. From at bv — yw, (28
the definition of the probability current and the adiabatic
hypothesis we have where 0<a<1 is essentially the threshold value,and y

(D[ 6(Xx—X,)— 0(x—x_)]=—De Y'Pyer/0 (20  are positive constants, ang is the applied current. For the
sake of simplicity and without loss of generality, we will

where a diagonal diffusion tensor is assumed. Integrating@kel,=0. The drift field for this model is given by

now overx and taking into account that, due to the height of uy(v,wW)=v(a—v)(v—1)—w, (29)
the barrier, the main contribution to these integrals is around
the maximum of the potentiad,, one obtains Uy(v,w)=bv — yw. (30

| ”n

R T, As can be seen from E28), the null cline of the deter-
Ji(t)=-D >7D) € ° (e* m—e* "), (2D ministic dynamics of Eqs(29) and (30) is the line v
= (y/b)w. By substitution on the right-hand side of E§7),
we find the equation for steady states

where Ug=d?U/dx?|,, Up=U(X), and u™, u~ are the

values of the generalized chemical potential at the SFP. (a=v)(0—1) b 0 (31)
H H 1% —U)\U— — —U=VU.
By using Eq.(19) we can rewrite Eq(21) as Y
w12
Ul ' This is a third-order equation, which for certain values of the
_ —(Ug—U_)/D_ —(Ug—U_,)/D q )
2V D(Z’]TD (¥_e"o Ve, parameters has three rodsee Fig. 1 Two of these three

(220  fixed points are stableH_ and F,) and one is unstable
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0.30 - picture reveals about the physics of the problgif,9]. In
0.25 | the FHN model there is a fast variahl¢t) and a recovery-
like variable w(t). After the barrier threshold has been
020 + crossed, i.e., the system has gone to an “excited” state, the
045 system returngeven in the deterministic casto the “rest”
= state. As can be seen in Fig. 2, there is one stable state for
I 0.10 1 which the potential is larger than for the other stable state.
0.05 Therefore, there is a more stable state, which corresponds to
the rest state to which the system returns after some time,
0.00 - - - N under the action of the noise. In our scheme the presence of
oos] PP PN _0E 08 o 100 noise is necessary in order to return to the rest state because
v of the elimination ofw(t).
-0.10 - In order to show how this scheme can account for the
FIG. 1. Fixed points of the FitzHugh-Nagumo model far existence of stochastic resonance in the FHN modgl, we will
=0.5 andb/y=0.01 (nondimensional variablis suppose that the system is under the action of periodic forc-

ing. For the sake of simplicity, we will assume that the pa-

(Fo), situated between the other tf22]. Thus, in this case, rametera is a periodic functiora=ao(1+ psinwd), where

this system fulfills the conditions for our theory to be ap- €o iS @ small parameter arah(1+a)<1. .

plied. To takea as an oscillatory factor implies that the posi-

The functionU defined in Sec. Il has to be integrated in tions of F, (the USFR andF , (one of the SFPsas well as

this case over the line= (y/b)w. Performing this integra- the values of the potential at these points become oscillatory

tion, one obtains functions. The position oF _ (the other SFPremains con-
stant. Letvy andv_, v, be thev coordinates of the maxi-

(32) mum and the minima, respectively, of the potential;, one has

U,=U(v,)=& +nie(t). (34
On the other hand, when this system is in a noisy envi- To compute the moments and the power spectrum, we
ronment, in the limit of weak noise, we can approximate the

: X . _ assume that, in the limit of weak noise, the probability den-
dynamics of the fluctuations by the one-dimensional Lange-si,[y (in one dimensioncan be written a§2]
vin equation

q b p(v.,t)=n.(1)d,, +n_(1)5,, , (35
—vzv(a—v)(v—l)—;v+§(t), 33)

4
_vtoatl g a+b/'yvz.

7 3 Vvt

dt wheren, andn_ come from the kinetic equatiori25). The

formal solution to these equations is found to be

that is, the fluctuations run along the line= (y/b)w. As can .
be easily checked) is the potential for the deterministic nt(t):gl(t)<nt(t0)g(t0)+f K. (t)g(t)dt' |,
part of this equation. The two SFP’s of this one-dimensional to
dynamics are the two minima of E(82) and the USFP is its (36)
maximum. Collinset al.[9] previously have arrived at simi- .
lar conclusions by another approach in the context of thé"”th
study of aperiodic stochastic resonance. t ,

Figure 2 shows the asymmetric shapdJofBefore going 9(t)= f (Ky+Ko)dt'. (37)
any further, it would be interesting to summarize what this

In order to calculata.. we perform a Taylor expansion of

0.030 the transition rates up to first order with respect to the pa-
rametere(t):
0.025 Y
Ki=a6+aI¢OSIn wot, (38)
0.020 ) N .
where¢, has been defined ag=¢€,/D anda, anda; are
< 0015+ given by
= e /D
0.010 *_ * . ID
0.005
—&/D
+ e * L€+ /D
0.000 ay =5 Ao (7o~ 77+), (40

025 000 025 050 075 100 125  With dg being the zeroth-order contribution gg|U” , &
and 7 the zeroth- and first-order contributions 0f at the
USFP, and¢.. and 7. the zeroth- and first-order contribu-
FIG. 2. Asymmetric one-dimensional potential as a function oftions of U at the SFPs. The first-order contribution can be
v (nondimensional variablgs neglected in the limit of weak noise. By introducing these

\'
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Taylor expansions in Eq$36) and(37), we obtain the popu- (v (t)v(t+ T)|Ut0,to>

lations up to first order in the parametgg:

=v,(t+ v (N (t+ 7o, vt)n+(t|0t0yt0)
ag agal

ni(t):eao(tto)( 5U(t0)’vt_a_0 - (f)o P

coq wot) +v, (t+7)v_(Hn, (t+7v_ ,t)n_(t|vt0,t0)
+u_(t+nv (On_(t+7v, ,t)n+(t|vt0,to)
jfCOi(,L)Oto"l'q)) a4 COS(w0t0+<D)

+ poay W— Ow_o—(a§+w§)1’2 +v_(t+7')v_(t)n_(t+7'|v+,t)n_(t|vt0,t0). (43

Let us make some considerations that allow us to simplify

x

L %0 1+¢0ﬂ005(w0t)> —¢oaiw the computation of the autocorrelation function. It is clear
@ wo Y (024 wd)12 from Eq. (43) that the Fourier transform of the autocorrela-
tion function will depend ort as well as on the frequency.
aq Si(wgt+P) This dependence is avoided by taking its average over the
ow—0 W’ (41) period of the external forcinf2]. The autocorrelation func-

tion is to be computed up to the second order of the param-
eter po~D L. Thus, in the limit of weak nois® ~* can be
where ®=arctangy/wy) and ag= ag + ag . The quantity neglected in comparision © ~2. Therefore, the only contri-
nt(tlvto,to) is the conditional probability that(t) is in the ~ bution of the first-order term of . to the autocorrelation
positive state at time given that the state at tirtg wasu,. function comes from its product with the zeroth-order term

. R . " of the product ofn’s. However, on doing the average this
From this equation it is possible to compute the statisticaterm vanishes. So, finally, taking into account that=0,

properties of the process(t). Of particular interest to our \ye arrive at
purposes is to find its autocorrelation function, which is 5
given by[6] (v(Ho(t+ T)|Utovt0>=)\+n+(t+ v, at)n+(t|vtovto),
(44)
where the overbar indicates an average dvand\ , is the
position of F, up to order zero. From Eq$43) and (44),

taking the average and the lintg— —oo, we finally obtain
The conditional correlation function is given by the expression for the autocorrelation function

1
a%-i— w%

COS(DOT)" ag @l agaja;

)Sir((l)o’]')‘f‘ 2 2 L >

(v(tv(t+7))= lim (v(t)v(t+ 7')|vt0,t0>. (42

tos—o

o]

<v<t>v<t+r>>=xi(a—0

ay ag
+ea07<_0) ( 1— -0
@g @

ag

- - 2 2

Qo &y Qg _| (a1)? a,

O = a2 =2
0| o 1

1
+xa¢3[§eao'f'

T 2
g 0y aq
+|—————ay

cog wqT) (ao a?  agaja;
R __J’_—

o ®o a(2)+ w(z) @p Wo o apgtwy | wg o

1, 1fag)?
+§(a’l) +§ w—o . (45)

With this results we can now compute the averaged power a; A2 g
spectrum given by S(Q)=\2— 5(0)+22—2 ag( 1- —)
Qg apgtQ Qg
® 27w to__ 00000 2 42 -2 2 —\2, -
S)=5 °S<Q,t>dt=f (v(Do(t+7)e " 7dr, fon N0 | (@) ar (@) ey g
0 —o 2,02 2 2
(46) agt+Q g ag
1(a;H® 1[ erag
where the last equality follows from the commutative char- 2 agy * 2 o Q= wo).  (47)

acter of the averaging and the Fourier transform. We obtain,
after a Fourier transformation of E@5), In this expression the fraction of the total power in the broad-
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FIG. 3. Signal-to-noise ratio as a function of the noise Idvel
(nondimensional variablgs

band noisy part of the spectrum, which usually is a smal
fraction of the total power, has been negledi2H Note that
in the power spectrum there is a term proportionabél).
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In particular, we have treated the FHN model. Much numeri-
cal work on this subject has been performed, but only a few
papers have treated this problem from an analytical perspec-
tive due to the difficulties inherent in the nature of nonpo-
tential system. The work by Collinst al. [9] where aperi-
odic SR is discussed, and the paper by €&al. [13], in
which the theoretical framework developed by Gimrglal.

[10] was used to interpret some experimental results, are
among the ones discussing analytical aspects.

Far from being specific to this problem, the method we
have proposed can be extended to a wide variety of different
nonpotential systems ranging from threshold systems to
some autocatalytic models and symmetric double-well sys-
tems from fields so diverse as chemical kinetics and popula-
tion dynamics. Although, for the sake of brevity, we do not
quote our results here, we have applied our approach to that
of Collins et al. [9] with a periodic input and we have ob-
tained similar results in both cases, not the same because in
the case Collingt al. the input is additive and the threshold
is maintained constant. We have applied our theory to the
standard double-well modgl 1] and we have obtained that

This is due to the asymmetry of the potential that originateshis model exhibits SR. The result in this case is equivalent
a mean probability current between one stable state and thg the one obtained if2] for a symmetric quartic potential.
more stable one. To our knowledge, this term has not been The scheme we have presented in this paper allows us to

obtained in previous approaches to this prob[@&y.0].
From Eq.(47) the signal-to-noise rati® can be obtained
as a function of the noise lev8l by settingQ) = wy:

en|3 [a)\? agaja; 1 (a;)?
ano wg a 2 ag
R= = (48
%o
1——
o

We have plottedR in Fig. 3 as a function of the noise
level. It exhibits a maximum for a nonzero noise level and
therefore this model shows a stochastic resonance.

IV. CONCLUSIONS

In this paper we have proposed a method to analyze th

treat potential and the class of aforementioned nonpotential
systems in a unified way. Moreover, it reproduces the essen-
tials of the physics of the problem, as can be seen from the
obtainment of the refractory current in E§2) [12]. Finally,

it is worth pointing out that our method, which constitutes
essentially an extension of the Kramers rate theory to this
kind of nonpotential systems, enables one to compute the
kinetic coefficients in a simple and direct way.
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